Professional Development Program

On

VEHICLE DYNAMICS FOR PASSENGER CARS & LIGHT TRUCKS

By
Dr. Richard Lundstrom

Program Dates: 23rd to 25th January 2014.
Venue: Hotel Radha Regent, Chennai.
This seminar will present an introduction to Vehicle Dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions. Manual and computer techniques for analysis and evaluation are presented. Vehicle system dynamic performance in the areas of drive-off, braking, directional control and rollover is emphasized. The dynamics of the powertrain, brakes, steering, suspension and wheel and tire subsystems and their interactions are examined along with the important role of structure and structural parameters related to vehicle dynamics. Physical experiments, applicable to vehicle dynamics are also introduced.

Learning Objectives

By attending this seminar, you will be able to:

- Summarize how vehicle dynamics is related to the voice of the customer
- Identify important vehicle system parameters useful for effective application of vehicle dynamics to chassis development
- List and explain parameters that affect vehicle performance relative to drive-off, braking, directional control and rollover
- Identify physical measurements needed to effectively apply vehicle dynamics to passenger cars and light trucks
- Define the value of vehicle dynamics simulation in the development and evaluation of vehicles
- Explain the balance required between ride, directional control and rollover and the essential process for this balance to be obtained for marketplace vehicles
Who Should Attend
Automotive engineers and quality professionals who work in product design, testing, quality, process or development will benefit from attending.

Prerequisites
Participants should have an undergraduate engineering degree and some exposure to vehicle dynamics.

Topical Outline

DAY ONE

- The Role of Vehicle Dynamics in Passenger Car and Light Truck Product Development
- Vehicle Dynamics and the Voice of the Customer
 - Use of QFD to manage vehicle dynamics performance in drive-off, braking, ride and handling
 - Thinking systemically about automotive chassis design and development through the logic of vehicle dynamics
- Effective Metrics for Vehicle Dynamics
 - Vehicle system, subsystem and piece-part metrics used to link vehicle dynamics to vehicle system design and development: bounce frequencies, lateral acceleration gain, understeer gradient, roll gradient, roll stiffness, etc.
- Elementary Tire Patch Forces and Moments: Forces and Moments at the Tire Contact Patch During Steady Braking, Steady Cornering and Steady Drive-Off Manoeuvres.
• Acceleration (Drive-Off) Performance
 o Basic powertrain system anatomy and architecture
 o Power limited and traction limited drive-off including powertrain system dynamics required to produce vehicle motive force at the tire patch
 o Road load considerations: aerodynamic resistance, rolling resistance, grade resistance
 o Performance prediction in acceleration and fuel economy

DAY TWO

• Braking Performance
 o Basic brake system anatomy and architecture
 o Braking dynamics: braking forces, weight transfer, center of weight, brake force distribution, stability
 o Pedal force gain, brake proportioning, braking efficiency, anti-lock braking systems
 o Tire - road limitations
 o Federal requirements for braking performance
 o Brake system performance prediction

• Ride Fundamentals
 o Input excitation signals: road roughness, vehicle sources (tire/wheel system, driveline and engine)
 o Vehicle response properties: suspension isolation, tire vertical stiffness, spring rate ratio, suspension stiffness, ride rate, suspension damping, pitch and bounce frequencies
 o Quarter vehicle and pitch plane ride simulations
 o Ride performance prediction based on flat ride criteria
DAY THREE

- Cornering Fundamentals
 - Low speed turning
 - High speed cornering: tire forces, Bundorf bicycle model, understeer gradient, characteristic speed, lateral acceleration gain, yaw velocity gain, side-slip
 - Suspension effects on cornering: tire cornering stiffness, camber thrust, roll steer, lateral force compliance steer, aligning torque, lateral load transfer, steering system
 - Experimental methods for vehicle handling development

- Suspension Systems
 - Suspension system anatomy and suspension system performance requirements relative to drive-off, braking, ride and handling
 - Solid live axles, twist beam suspensions and independent suspensions
 - Side view pitch poles and pitch axis considerations: anti-squat and anti-dive suspension geometry, wheel travel and caster geometry
 - Role axis considerations: roll center location, roll axis geometry and location, wheel travel and toe geometry, wheel travel and camber geometry

- Steering Systems
 - Steering system anatomy, architecture and performance requirements
 - Steering geometry, wheel geometry, steering system forces and moments, steering ratio, steering compliance
 - Experimental methods for steering system performance evaluation and development
• Roll-Over Fundamentals
 o Vehicle system roll-over prevention requirements
 o Elementary and suspended vehicle simulations
 o Suspension system and steering system considerations
• Introduction to CAE Applications for Vehicle Dynamics: CarSim and sSNAP and Manual Analysis Methods.

Instructor Profile:

Dr. Richard Lundstrom is an independent research and project engineer specializing in dynamic system engineering, automotive chassis development, and application of the science of improvement. He teaches Chassis Design, Systems Analysis and Mechanical Control Systems at Kettering University, where he also served as team leader for the annual Kettering Industry Symposium. Dr. Lundstrom previously taught several mechanical engineering courses, developed Vehicle Dynamics and Thermal System Design courses, and founded and directed the Vehicle Dynamics Lab at Lawrence Tech. He has worked as a product engineer with Ford Motor Company and developed and taught a Fundamentals of Vehicle Design course. Dr. Lundstrom is a member of SAE, ASME, ASQ, ASEE and SCCA. He received a B.S. in Mechanical Engineering from the University of Illinois, a M.S. from the University of Michigan and a Ph.D. from Oakland University.
Professional Development Program

on

Vehicle Dynamics for Passenger Cars & Light Trucks

by Dr. Richard Lundstrom

From 23rd to 25th January 2014

at

Hotel Radha Regent,

Jawaharlal Nehru Road, Chennai.

Program Fee Details:

<table>
<thead>
<tr>
<th>Category</th>
<th>Fee* per participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAEINDIA Members</td>
<td>Rs. 15,500/-</td>
</tr>
<tr>
<td>Professional Participants</td>
<td>Rs. 17,073/-</td>
</tr>
<tr>
<td>SAEINDIA Academia Members</td>
<td>Rs. 9,000/-</td>
</tr>
<tr>
<td>Academia Participants</td>
<td>Rs.10,236/-</td>
</tr>
<tr>
<td>Corporate Booking – (5 members & above)</td>
<td>10% discount</td>
</tr>
</tbody>
</table>

Please send the completed registration form along with a cheque on par or DD drawn in favour of “SAEINDIA” payable at Chennai or pay into SAEINDIA ICICI A/c No 000101202792 to the address:

Dy. Director - Marketing, No. 1/17 Ceebros Arcade, 2nd Floor, 3rd Cross St, Kasturba Nagar, Adyar, Chennai 600 020.

Tel: +91 44-2441 1904, 4215 2280, Mob: +91 94443 92613.

E-Mail us at: seshadrid@saeindia.org
Vehicle Dynamics for Passenger Cars & Light Trucks
by
Dr. Richard Lundstrom
From 23rd to 25th January 2014

Registration Form

Full Name : ________________________________
Job Title : ________________________________
Department : ______________________________
Company / Institution: __________________________
Address : __________________________________
__
State : ____________________________________
City : ______________________________________
Postal Code : ________________________________
Country : __________________________________
Phone / Mob No : ____________________________
E Mail id : __________________________________
SAEINDIA Member (Yes/No): ____________________
Date: ____________

Signature

Participants for this Program can apply for SAEINDIA membership online at the website www.saeindia.org